Athreya, K. B. ; Kothari, S. (2015) Polynomial formula for sums of powers of integers Resonance, 20 (8). pp. 726-743. ISSN 0971-8044
PDF
208kB |
Official URL: http://doi.org/10.1007/s12045-015-0229-9
Related URL: http://dx.doi.org/10.1007/s12045-015-0229-9
Abstract
In this article, it is shown that for any positive integer k ≥ 1, there exist unique real numbers a kr , r= 1, 2,…, (k+1), such that for any integer n ≥ 1 Sk,n≡∑j=1njk=∑r=1(k+1)akrnr. The numbers a kr are computed explicitly for r = k + 1, k, k - 1,…, (k - 10). This fully determines the polynomials for k = 1, 2,…, 12. The cases k = 1, 2, 3 are well known and available in high school algebra books.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to Springer Nature |
Keywords: | Sums of powers, integers, polynomial formula |
ID Code: | 131562 |
Deposited On: | 07 Dec 2022 06:12 |
Last Modified: | 07 Dec 2022 06:12 |
Repository Staff Only: item control page