Polynomial formula for sums of powers of integers

Athreya, K. B. ; Kothari, S. (2015) Polynomial formula for sums of powers of integers Resonance, 20 (8). pp. 726-743. ISSN 0971-8044

[img] PDF
208kB

Official URL: http://doi.org/10.1007/s12045-015-0229-9

Related URL: http://dx.doi.org/10.1007/s12045-015-0229-9

Abstract

In this article, it is shown that for any positive integer k ≥ 1, there exist unique real numbers a kr , r= 1, 2,…, (k+1), such that for any integer n ≥ 1 Sk,n≡∑j=1njk=∑r=1(k+1)akrnr. The numbers a kr are computed explicitly for r = k + 1, k, k - 1,…, (k - 10). This fully determines the polynomials for k = 1, 2,…, 12. The cases k = 1, 2, 3 are well known and available in high school algebra books.

Item Type:Article
Source:Copyright of this article belongs to Springer Nature
Keywords:Sums of powers, integers, polynomial formula
ID Code:131562
Deposited On:07 Dec 2022 06:12
Last Modified:07 Dec 2022 06:12

Repository Staff Only: item control page