Bagchi, Bhaskar ; Datta, Basudeb (1998) A structure theorem for pseudomanifolds Discrete Mathematics, 188 (1-3). pp. 41-60. ISSN 0012-365X
Full text not available from this repository.
Official URL: http://linkinghub.elsevier.com/retrieve/pii/S00123...
Related URL: http://dx.doi.org/10.1016/S0012-365X(97)00273-2
Abstract
We introduce the notion of primitive pseudo-manifolds and prove that all pseudo-manifolds (without boundary) are built out of the primitive ones by a canonical procedure. This theory is used to explicitly determine and count all the pseudo-manifolds of dimension d ≥ 1 on at most d + 4 vertices. As a consequence, it turns out that their geometric realisations are either spheres or iterated suspensions of the real projective plane.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to Elsevier Science. |
ID Code: | 991 |
Deposited On: | 25 Sep 2010 06:35 |
Last Modified: | 27 Dec 2010 06:07 |
Repository Staff Only: item control page