Elongation factor-2, a Th1 stimulatory protein of Leishmania donovani, generates strong IFN-γ and IL-12 response in cured Leishmania-infected patients/hamsters and protects hamsters against Leishmania challenge

Kushawaha, Pramod K. ; Gupta, Reema ; Sundar, Shyam ; Sahasrabuddhe, Amogh A. ; Dube, Anuradha (2011) Elongation factor-2, a Th1 stimulatory protein of Leishmania donovani, generates strong IFN-γ and IL-12 response in cured Leishmania-infected patients/hamsters and protects hamsters against Leishmania challenge The Journal of Immunology, 187 (12). pp. 6417-6427. ISSN 0022-1767

Full text not available from this repository.

Official URL: http://www.jimmunol.org/content/187/12/6417.short

Related URL: http://dx.doi.org/10.4049/jimmunol.1102081

Abstract

In visceral leishmaniasis, Th1 types of immune responses correlate with recovery from and resistance to disease, and resolution of infection results in lifelong immunity against the disease. Leishmanial Ags that elicit proliferative and cytokine responses in PBMCs from cured/exposed/Leishmania patients have been characterized through proteomic approaches, and elongation factor-2 is identified as one of the potent immunostimulatory proteins. In this study, we report the cloning and expression of Leishmania donovani elongation factor-2 protein (LelF-2) and its immunogenicity in PBMCs of cured/exposed Leishmania-infected patients and hamsters (Mesocricetus auratus). Leishmania-infected cured/exposed patients and hamsters exhibited significantly higher proliferative responses to recombinant Lelf-2 (rLelF-2) than those with L. donovani-infected hosts. The soluble L. donovani Ag stimulated PBMCs of cured/exposed and Leishmania patients to produce a mixed Thl/Th2-type cytokine profile, whereas rLelF-2 stimulated the production of IFN-γ, IL-12, and TNF-α but not IL-4 or IL-10. Further, rLelF-2 downregulated LPS-induced IL-10 as well as soluble L. donovani Ag-induced IL-4 production by Leishmania patient PBMCs. The immunogenicity of rLelF-2 was also checked in hamsters in which rLelF-2 generates strong IL-12– and IFN-γ–mediated Th1 immune response. This was further supported by a remarkable increase in IgG2 Ab level. We further demonstrated that rLelF-2 was able to provide considerable protection (∼65%) to hamsters against L. donovani challenge. The efficacy was supported by the increased inducible NO synthase mRNA transcript and Th1-type cytokines IFN-γ, IL-12, and TNF-α and downregulation of IL-4, IL-10, and TGF-β. Hence, it is inferred that rLelF-2 elicits a Th1 type of immune response exclusively and confers considerable protection against experimental visceral leishmaniasis.

Item Type:Article
Source:Copyright of this article belongs to American Association of Immunologists.
ID Code:94434
Deposited On:15 Nov 2012 06:34
Last Modified:27 Oct 2015 11:35

Repository Staff Only: item control page