A fractal model of earthquake occurrence: theory, simulations and comparisons with the aftershock data

Bhattacharya, Pathikrit ; Chakrabarti, Bikas K. ; Kamal, * (2011) A fractal model of earthquake occurrence: theory, simulations and comparisons with the aftershock data Journal of Physics Conference Series, 319 (1). 012004. ISSN 1742-6588

[img] PDF
6MB

Official URL: http://iopscience.iop.org/1742-6596/319/1/012004

Related URL: http://dx.doi.org/10.1088/1742-6596/319/1/012004

Abstract

Our understanding of earthquakes is based on the theory of plate tectonics. Earthquake dynamics is the study of the interactions of plates (solid disjoint parts of the lithosphere) which produce seismic activity. Over the last about fifty years many models have come up which try to simulate seismic activity by mimicking plate plate interactions. The validity of a given model is subject to the compliance of the synthetic seismic activity it produces to the well known empirical laws which describe the statistical features of observed seismic activity. Here we present a review of one such, purely geometric, model of earthquake dynamics, namely The Two Fractal Overlap Model. The model tries to emulate the stick-slip dynamics of lithospheric plates with fractal surfaces by evaluating the time-evolution of overlap lengths of two identical Cantor sets sliding over each other. As we show later in the text, some statistical aspects of natural seismicity are naturally captured by this simple model. More importantly, however, this model also reveals a new statistical feature of aftershock sequences which we have verified to be present in nature as well. We show that, both in the model as well as in nature, the cumulative integral of aftershock magnitudes over time is a remarkable straight line with a characteristic slope. This slope is closely related to the fractal geometry of the fault surface that produces most of thee aftershocks. We also go on to discuss the implications that this feature may have in possible predictions of aftershock magnitudes or times of occurrence.

Item Type:Article
Source:Copyright of this article belongs to Institute of Physics.
ID Code:93072
Deposited On:12 Jun 2012 07:26
Last Modified:25 Jan 2023 09:42

Repository Staff Only: item control page