Radhakrishnan, Jaikumar ; Sen, Pranab ; Vishwanathan, Sundar (2000) Depth-3 arithmetic circuits for Sn2(X) and extensions of the Graham-Pollack theorem Lecture Notes in Computer Science, 1974 . pp. 176-187. ISSN 0302-9743
|
PDF
- Author Version
299kB |
Official URL: http://www.springerlink.com/content/l3u8tn6914gl4a...
Related URL: http://dx.doi.org/10.1007/3-540-44450-5_14
Abstract
We consider the problem of computing the second elementary symmetric polynomial S2n (X) = Δ ∑ 1≤ i< j≤n XiXj using depth-three arithmetic circuits of the form ∑ri=1 Πsij=1 Lij(X), where each Lij is a linear form in X1, . . . ,Xn. We consider this problem over several fields and determine exactly the number of multiplication gates required. The lower bounds are proved for inhomogeneous circuits where the Lij's are allowed to have constants; the upper bounds are proved in the homogeneous model. For reals and rationals, the number of multiplication gates required is exactly n-1; in most other cases, it is [n/2]. This problem is related to the Graham-Pollack theorem in algebraic graph theory. In particular, our results answer the following question of Babai and Frankl: what is the minimum number of complete bipartite graphs required to cover each edge of a complete graph an odd number of times? We show that for infinitely many n, the answer is [n/2].
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to Springer. |
ID Code: | 89516 |
Deposited On: | 27 Apr 2012 13:36 |
Last Modified: | 19 May 2016 04:03 |
Repository Staff Only: item control page