Molecular biology of Leishmania

Majumder, H. K. ; Bard, Enzo (1989) Molecular biology of Leishmania Biochemistry and Cell Biology, 67 (9). pp. 516-524. ISSN 0829-8211

Full text not available from this repository.

Official URL: http://www.nrcresearchpress.com/doi/abs/10.1139/o8...

Related URL: http://dx.doi.org/10.1139/o89-083

Abstract

Leishmania is a trypanosomatid protozoa with a digenetic life cycle. Sandflies inject promastigotes, the free living form present in their salivary glands, into mammals where the parasite colonizes macrophages, transforming into intracellular amastigotes. The cycle is completed when during a blood meal the insect ingests infected macrophages, the amastigotes are released in the gut where they transform back into promastigotes. Leishmania has to adapt to the changing life conditions, from free-living forms in the poikilothermic insect vector to obligatory intracellular parasite in the homeothermic mammalian host. It also has to adapt to the acidic pH of the macrophage's phagolysosome where amastigotes multiply. The adaptative response of Leishmania includes morphological, physiological, and biochemical changes. Promastigotes can be grown in culture medium. Studies of changes taking place during adaptation have been facilitated by the establishment of in vitro conditions that allow the transformation of amastigotes into promastigotes and vice versa. The system is well suited for studying regulation of gene expression during adaptative differentiation. Some mechanisms of mRNA processing are unique to these protozoa: trans-splicing and RNA editing. Several genes that are differentially expressed in the two stages have been studied. No obvious cis regulatory motifs have been found in the DNA.Key words: Leishmania, genes, differentiation, regulation.

Item Type:Article
Source:Copyright of this article belongs to NRC Research Press.
ID Code:87831
Deposited On:22 Mar 2012 07:52
Last Modified:22 Mar 2012 07:52

Repository Staff Only: item control page