An idea of tate-dwork for the "hasse invariant" applied to a classical theorem of Fermat

Chowla, S. (1970) An idea of tate-dwork for the "hasse invariant" applied to a classical theorem of Fermat Journal of Number Theory, 2 (4). pp. 423-424. ISSN 0022-314X

Full text not available from this repository.

Official URL: http://linkinghub.elsevier.com/retrieve/pii/002231...

Related URL: http://dx.doi.org/10.1016/0022-314X(70)90045-4

Abstract

Let p denote a prime ≡ 1 (mod 4). We have (Fermat) p = a2 + b2 where (say) a ≡ 1 (mod 4). It is proved that α ≡±(1/2)F(p + 1)/2 ( 1/2, 1/2, 1; -1) where Fn(α, β, γ; x) stands for the sum of the first n terms of the hypergeometric series F(α, β, γ; x). The sign is + or − according as p≡ 1 (mod 8) or p ≡ 5 (mod 8).

Item Type:Article
Source:Copyright of this article belongs to Elsevier Science.
ID Code:8771
Deposited On:28 Oct 2010 11:12
Last Modified:05 Dec 2011 03:54

Repository Staff Only: item control page