Cook, R. J. ; Raghavan, S. (1986) Positive values of indefinite quadratic forms Mathematika, 33 (1). pp. 164-169. ISSN 0025-5793
Full text not available from this repository.
Official URL: http://journals.cambridge.org/action/displayAbstra...
Related URL: http://dx.doi.org/10.1112/S0025579300013978
Abstract
Let f(x)= ∑ n i=1 ∑ n j=1 fijxixj (fij= fji) (1) be a real quadratic form in n variables with integral coefficients (i.e., 2fijε Z,fij ε Z.) and determinant D ≠ O. A well-known theorem of Cassels [1] states that if the equation f = 0 is properly soluble in integers x1 … , xn then there is a solution satisfying 0<||x||=max|xi≪ F(n-1)/2, (2). ∏ni=1||x|| ≪ Fn(n-1)/2+(n-2)/2, (3).
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to Cambridge University Press. |
Keywords: | 10C25; Number Theory; Forms; Minima Of Forms |
ID Code: | 86760 |
Deposited On: | 12 Mar 2012 15:46 |
Last Modified: | 12 Mar 2012 15:46 |
Repository Staff Only: item control page