On the number of zeros of diagonal cubic forms

Chowla, S. ; Cowles, J. ; Cowles, M. (1977) On the number of zeros of diagonal cubic forms Journal of Number Theory, 9 (4). pp. 502-506. ISSN 0022-314X

Full text not available from this repository.

Official URL: http://linkinghub.elsevier.com/retrieve/pii/002231...

Related URL: http://dx.doi.org/10.1016/0022-314X(77)90010-5

Abstract

Let Ms, be the number of solutions of the equation X13+ X23+ … + Xs3=0 in the finite field GF(p). For a prime p ≡ 1(mod 3), ∑s=1 MsX3 = (x/1-px)+((x2(p-1)(2+dx))/(1-3px2-pdx3)), M3= p2 + d(p - 1), and M4 = p2 + 6(p2 − p). Here d is uniquely determined by 4p = d2 + 27b2 and d ≡ 1(mod 3).

Item Type:Article
Source:Copyright of this article belongs to Elsevier Science.
ID Code:8605
Deposited On:28 Oct 2010 11:20
Last Modified:05 Dec 2011 03:59

Repository Staff Only: item control page