Chowla, S. ; Cowles, J. ; Cowles, M. (1977) On the number of zeros of diagonal cubic forms Journal of Number Theory, 9 (4). pp. 502-506. ISSN 0022-314X
Full text not available from this repository.
Official URL: http://linkinghub.elsevier.com/retrieve/pii/002231...
Related URL: http://dx.doi.org/10.1016/0022-314X(77)90010-5
Abstract
Let Ms, be the number of solutions of the equation X13+ X23+ … + Xs3=0 in the finite field GF(p). For a prime p ≡ 1(mod 3), ∑∞s=1 MsX3 = (x/1-px)+((x2(p-1)(2+dx))/(1-3px2-pdx3)), M3= p2 + d(p - 1), and M4 = p2 + 6(p2 − p). Here d is uniquely determined by 4p = d2 + 27b2 and d ≡ 1(mod 3).
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to Elsevier Science. |
ID Code: | 8605 |
Deposited On: | 28 Oct 2010 11:20 |
Last Modified: | 05 Dec 2011 03:59 |
Repository Staff Only: item control page