RBCs under optical tweezers as cellular motors and rockers: microfluidic applications

Mohanty, Samarendra ; Gupta, Pradeep ; Mohanty, Khyati (2006) RBCs under optical tweezers as cellular motors and rockers: microfluidic applications Proceedings of SPIE, 6326 . 63262E-63262E. ISSN 0277-786X

Full text not available from this repository.

Official URL: http://spiedigitallibrary.org/proceedings/resource...

Related URL: http://dx.doi.org/10.1117/12.682001

Abstract

Recently, we have reported self-rotation of normal red blood cells (RBC), suspended in hypertonic buffer, and trapped in unpolarized laser tweezers. Here, we report use of such an optically driven RBC-motor for microfluidic applications such as pumping/centrifugation of fluids. Since the speed of rotation of the RBC-motor was found to vary with the power of the trapping beam, the flow rate could be controlled by controlling the laser power. In polarized optical tweezers, preferential alignment of trapped RBC was observed. The aligned RBC (simulating a disk) in isotonic buffer, could be rotated in a controlled manner for use as a microfluidic valve by rotation of the plane of polarization of the trapping beam. The thickness of the discotic RBC could be changed by changing the osmolarity of the solution and thus the alignment torque on the RBC due to the polarization of the trapping beam could be varied. Further, in polarized tweezers, the RBCs in hypertonic buffer showed rocking motion while being in rotation. Here, the RBC rotated over a finite angular range, stopped for some time at a particular angle, and then started rotating till it was back to the aligned position and this cycle was found repetitive. This can be attributed to the fact that though the RBCs were found to experience an alignment torque to align with plane of polarization of the tweezers due to its form birefringence, it was smaller in magnitude as compared to the rotational torque due to its structural asymmetry in hypertonic solution. Changes in the laser power caused a transition from/to rocking to/from motor behavior of the RBC in a linearly polarized tweezers. By changing the direction of polarization caused by rotation of an external half wave plate, the stopping angle of rocking could be changed. Further, RBCs suspended in intermediate hypertonic buffer and trapped with polarized tweezers showed fluttering about the vertical plane.

Item Type:Article
Source:Copyright of this article belongs to The International Society for Optical Engineering.
ID Code:83748
Deposited On:22 Feb 2012 12:47
Last Modified:22 Feb 2012 12:47

Repository Staff Only: item control page