Saha, Amit ; Deb, Kalyanmoy (2010) A bi-criterion approach to multimodal optimization: self-adaptive approach Lecture Notes in Computer Science, 6457 . pp. 95-104. ISSN 0302-9743
Full text not available from this repository.
Official URL: http://www.springerlink.com/content/8676217j87173p...
Related URL: http://dx.doi.org/10.1007/978-3-642-17298-4_10
Abstract
In a multimodal optimization task, the main purpose is to find multiple optimal solutions, so that the user can have a better knowledge about different optimal solutions in the search space and as and when needed, the current solution may be replaced by another optimum solution. Recently, we proposed a novel and successful evolutionary multi-objective approach to multimodal optimization. Our work however made use of three different parameters which had to be set properly for the optimal performance of the proposed algorithm. In this paper, we have eliminated one of the parameters and made the other two self-adaptive. This makes the proposed multimodal optimization procedure devoid of user specified parameters (other than the parameters required for the evolutionary algorithm). We present successful results on a number of different multimodal optimization problems of upto 16 variables to demonstrate the generic applicability of the proposed algorithm.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to Springer. |
Keywords: | Multimodal Optimization; Multi-objective Optimization; Self-adaptive Algorithm; Hooke-Jeeves Search |
ID Code: | 81021 |
Deposited On: | 03 Feb 2012 11:47 |
Last Modified: | 03 Feb 2012 11:47 |
Repository Staff Only: item control page