Supersensitive measurement of angular displacements using entangled photons

Jha, Anand Kumar ; Agarwal, Girish S. ; Boyd, Robert W. (2011) Supersensitive measurement of angular displacements using entangled photons Physical Review A, 83 (5). 053829_1-053829_7. ISSN 1050-2947

Full text not available from this repository.

Official URL: http://pra.aps.org/abstract/PRA/v83/i5/e053829

Related URL: http://dx.doi.org/10.1103/PhysRevA.83.053829

Abstract

We show that the use of path-entangled states of photons, having nonzero orbital angular momentum (OAM), increases the resolution and sensitivity of angular-displacement measurements performed using an interferometer. In the ideal case of maximally path-entangled states, the resolution of angular-displacement measurements increases by a factor of Nl, while the uncertainty in the measurement of angular displacements scales as 1/Nl, where N is the number of entangled photons, half of which carry, on average, an OAM of +ℏ per photon and the other half carry an OAM of -ℏ per photon. We analyze measurement schemes for two- and four-photon entangled states produced by parametric down-conversion and, by employing a 4× 4 matrix formalism to study the propagation of entangled OAM modes, obtain explicit expressions for the resolution and sensitivity in these schemes. These results constitute an improvement over what could be obtained with N nonentangled photons carrying an orbital angular momentum of |l|ℏ per photon.

Item Type:Article
Source:Copyright of this article belongs to The American Physical Society.
ID Code:78837
Deposited On:23 Jan 2012 03:45
Last Modified:23 Jan 2012 03:45

Repository Staff Only: item control page