Mutual neighborhood based discriminant projection for face recognition

Niu, Ben ; Shiu, Simon Chi-Keung ; Pal, Sankar (2009) Mutual neighborhood based discriminant projection for face recognition Lecture Notes in Computer Science, 5909 . pp. 440-445. ISSN 0302-9743

Full text not available from this repository.

Official URL: http://www.springerlink.com/content/p236kv705811h3...

Related URL: http://dx.doi.org/10.1007/978-3-642-11164-8_71

Abstract

Linear Discriminant Analysis is optimal under the assumption that the covariance matrices of the conditional densities are normal and all identical. However, this doesn't hold for many real world applications, such as Facial Image Recognition, in which data are typically under-sampled and non-Gaussian. To address this deficiency the Non-Parametric Discriminant method has been developed, but it requires model selection to be carried out for selecting the free control parameters, making it not easy for use in practice. We proposed a method, Mutual Neighborhood based Discriminant Projection, to overcome this problem. MNDP identifies the samples that contribute most to the Baysesian errors and highlights them for optimization. It is more convenient for use than NDA and avoids the singularity problem of LDA. On facial image datasets MNDP is shown to outperform Eigenfaces and Fisherfaces under various experimental conditions.

Item Type:Article
Source:Copyright of this article belongs to Springer.
Keywords:k-nearest Neighbors; Mutual Neighborhood; Discriminant Projection; Face Recognition
ID Code:77741
Deposited On:14 Jan 2012 12:10
Last Modified:14 Jan 2012 12:10

Repository Staff Only: item control page