Pal, S. K. ; Bandyopadhyay, S. ; Murthy, C. A. (1998) Genetic algorithms for generation of class boundaries IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics, 28 (6). pp. 816-828. ISSN 1083-4419
Full text not available from this repository.
Official URL: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arn...
Related URL: http://dx.doi.org/10.1109/3477.735391
Abstract
A method is described for finding decision boundaries, approximated by piecewise linear segments, for classifying patterns in ℜN,N > 2, using an elitist model of genetic algorithms. It involves generation and placement of a set of hyperplanes (represented by strings) in the feature space that yields minimum misclassification. A scheme for the automatic deletion of redundant hyperplanes is also developed in case the algorithm starts with an initial conservative estimate of the number of hyperplanes required for modeling the decision boundary. The effectiveness of the classification methodology, along with the generalization ability of the decision boundary, is demonstrated for different parameter values on both artificial data and real life data sets having nonlinear/overlapping class boundaries. Results are compared extensively with those of the Bayes classifier, k-NN rule and multilayer perceptron.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to IEEE. |
ID Code: | 77676 |
Deposited On: | 14 Jan 2012 06:03 |
Last Modified: | 14 Jan 2012 06:03 |
Repository Staff Only: item control page