Impairment of reovirus mRNA methylation in extracts of interferon-treated Ehrilich ascites tumor cells: further characteristics of the phenomenon

Sen, G. C. ; Shaila, S. ; Lebleu, B. ; Brown, G. E. ; Desrosiers, R. C. ; Lengyel, (1997) Impairment of reovirus mRNA methylation in extracts of interferon-treated Ehrilich ascites tumor cells: further characteristics of the phenomenon Journal of Virology, 21 (1). pp. 69-83. ISSN 0022-538X

Full text not available from this repository.

Official URL: http://jvi.asm.org/content/21/1/69.short

Abstract

We reported earlier that the methylation of unmethylated reovirus mRNA (reo mRNAU) by the cellular methylating enzymes is impaired in extracts of uninfected, interferon-treated Ehrilich ascites tumor cells (S30INT). We find now that after the methylation of reo mRNAU has stopped in S30INT, the RNA can be reisolated and further methylated in an extract of control cells (S30C). Thus the impairment of methylation in S30INT cannot be due to cleavage or irreversible inactivation of reo mRNAU. Freshly added reo mRNAU can be methylated in S30INT in which the methylation of previously added reo mRNAU has stopped. This indicates that the impairment is due to the depletion of S-adenosylme thionine (the methyl donor), the accumulation of S-adenosylhomocysteine (an inhibitor of methylation), or the irreversible inactivation of reo mRNAU. Freshly added reo mRNAU can be methylated in S30INT in which the methylation of previously added reo mRNAU has stopped. This indicates that the impairment is not due to the depletion of S-adenosylmethionine (the methyl donor), the accumulation of S-adenoxylhomocysteine (an inhibitor of methylation), or the irreversible inactivation of the methylating enzymes. It may be due, however, to the unavailability of reo mRNAU for methylation. The extent of the impairment of reo mRNAU methylation in S30INT decreases with an increasing concentration of reo mRNAU but is not affected by added poly (U), ribosomal RNA, or encephalomyocarditis virus RNA (an mRNA that is probably not capped or methylated at its 5' end). The methylation of reo mRNAU is also impaired in an extract from cells that have not been treated with interferon but with the interferon inducer poly(I)-poly(C). The inhibitor is apparently a macromolecule that is inactivated during incubation. It decreases the methylation at the 7 position of the 5' terminal guanylate residue. In vitro, the rate of reo mRNA synthesis by reovirus cores in the presence of S30INT is the same as in the presence of S30C. However, the methylation of the de novo synthesized reo mRNA by the core-associated methylating enzyme(s) in vitro is inhibited by S30INT but not by S30C. The relevance of these phenomena to the inhibition of reovirus replication in interferon-treated cells remains to be established.

Item Type:Article
Source:Copyright of this article belongs to American Society for Microbiology.
ID Code:76601
Deposited On:06 Jan 2012 03:37
Last Modified:06 Jan 2012 03:37

Repository Staff Only: item control page