Dark energy and its implications for gravity

Padmanabhan, T. (2009) Dark energy and its implications for gravity Advanced Science Letters, 2 (2). pp. 174-183. ISSN 1936-6612

Full text not available from this repository.

Official URL: http://www.ingentaconnect.com/content/asp/asl/2009...

Related URL: http://dx.doi.org/10.1166/asl.2009.1024

Abstract

The cosmological constant is the most economical candidate for dark energy. No other approach really alleviates the difficulties faced by the cosmological constant because, in all other attempts to model the dark energy, one still has to explain why the bulk cosmological constant (treated as a low-energy parameter in the action principle)is zero. I argue that the until the theory is made invariant under the shifting of the Lagrangian by a constant, one cannot obtain a satisfactory solution to the cosmological constant problem. This is impossible in any generally covariant theory with the conventional low-energy matter action, if the metric is varied in the action to obtain the field equations. I review an alternative perspective in which gravity arises as an emergent, long wavelength phenomenon, and can be described in terms of an effective theory using an action associated with null vectors in the spacetime. This action is explicitly invariant under the shift of the energy momentum tensor Tab → Tab + Λgab and any bulk cosmological constant can be gauged away. Such an approach seems to be necessary for addressing the cosmological constant problem and can easily explain why its bulk value is zero. I describe some possibilities for obtaining the observed value from quantum gravitational fluctuations.

Item Type:Article
Source:Copyright of this article belongs to American Scientific Publishers.
ID Code:72592
Deposited On:29 Nov 2011 05:50
Last Modified:29 Nov 2011 05:50

Repository Staff Only: item control page