Khanduja, Sudesh K. ; Saha, Jayanti (1999) A generalized fundamental principle Mathematika, 46 (1). pp. 83-92. ISSN 0025-5793
Full text not available from this repository.
Official URL: http://journals.cambridge.org/action/displayAbstra...
Related URL: http://dx.doi.org/10.1112/S0025579300007580
Abstract
Let ν be a rank 1 henselian valuation of a field K having unique extension ῡ to an algebraic closure K̅ of K. For any subextension L/K of K̅/K, let G (L), Res (L) denote respectively the value group and the residue field of the valuation obtained by restricting ῡ to L. If a ∑ K̅/K define δK(a)=sup{ν̅(a-c)|c∑K̅,[K(C):K]<[K(a):K]} ωK(a)=max{ν̅(a-a1)|a1≠a runs over K-conjugates of a}.
Item Type: | Article |
---|---|
Keywords: | 12J10 Field Theory and Polynomials; Topological Fields; Valued Fields |
ID Code: | 69908 |
Deposited On: | 19 Nov 2011 11:05 |
Last Modified: | 19 Nov 2011 11:05 |
Repository Staff Only: item control page