Electrochemical sensing of sulphur dioxide: a comparison using dodecanethiol and citrate capped gold nanoclusters

Sathe Bhaskar, R. ; Risbud Mandar, S. ; Mulla Imtiaz, S. ; Pillai, Vijayamohanan K. (2008) Electrochemical sensing of sulphur dioxide: a comparison using dodecanethiol and citrate capped gold nanoclusters Journal of Nanoscience and Nanotechnology, 8 (6). pp. 3184-3190. ISSN 1533-4880

Full text not available from this repository.

Official URL: http://www.ingentaconnect.com/content/asp/jnn/2008...

Related URL: http://dx.doi.org/10.1166/jnn.2008.094

Abstract

A comparison of cyclic voltammograms of dodecanethiol (DDT) capped Au nanoclusters (5.0 ± 0.5 nm) and trisodium citrate (Cit) capped Au nanoclusters (~10-15 nm) modified glassy carbon electrode shows a dramatic variation in the current when exposed to a small amount of sulphur dioxide. This is explained using the electrocatalytic properties of Au nanoclusters towards the oxidation of SO2, thus facilitating the fabrication of electrochemical sensors for the detection of SO2. The intrinsic redox changes observed for gold nanocluster-modified glassy carbon electrodes disappear on passing SO2, despite a dramatic current increase, which indeed scales up with the amount of dissolved SO2. Interestingly, a complete rejuvenation of the redox behavior of gold is also observed on subsequent removal of SO2 from the solution by passing pure nitrogen for 15 minutes. Further, these nanoclusters when characterized with X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) after SO2 passage reveal a variety of SO2 adsorption modes on gold surface. XP spectra also showa shift of 1.03 eV towards higher binding energy indicating a strong adsorption of SO2 gas, while FTIR gives conclusive evidence for the interaction of SO2 with gold nanoparticles.

Item Type:Article
Source:Copyright of this article belongs to American Scientific Publishers.
Keywords:Monolayer Protected Gold Nanoclusters (AU-MPCS); SO2 Sensor; Cyclic Voltammetry; Fourier Transform Infrared Spectroscopy; X-ray Photoelectron Spectra
ID Code:68946
Deposited On:08 Nov 2011 04:45
Last Modified:08 Nov 2011 04:45

Repository Staff Only: item control page