Contributions towards a conjecture of Erdos on perfect powers in arithmetic progressions

Saradha, N. ; Shorey, T. N. (2005) Contributions towards a conjecture of Erdos on perfect powers in arithmetic progressions Compositio Mathematica, 141 . pp. 541-560. ISSN 0010-437X

Full text not available from this repository.

Official URL: http://journals.cambridge.org/action/displayAbstra...

Related URL: http://dx.doi.org/10.1112/S0010437X04001125

Abstract

Let n, d, k ≥ 2, b, y and l ≥ 3 be positive integers with the greatest prime factor of b not exceeding k. It is proved that the equation n(n+d)... (n+d.(k−1)d) = byl has no solution if d exceeds d1, where d1 equals 30 if l = 3; 950 if l = 4; 5 x 104 if l = 5 or 6; 108 if l = 7, 8, 9 or 10; 1015 if l ≥11. This confirms a conjecture of Erdos on the above equation for a large number of values of d.

Item Type:Article
Source:Copyright of this article belongs to Springer.
Keywords:Arithmetic Progressions; Diophantine Equations; Elliptic Equations
ID Code:67721
Deposited On:31 Oct 2011 13:28
Last Modified:31 Oct 2011 13:28

Repository Staff Only: item control page