Saradha, N. ; Shorey, T. N. (2005) Contributions towards a conjecture of Erdos on perfect powers in arithmetic progressions Compositio Mathematica, 141 . pp. 541-560. ISSN 0010-437X
Full text not available from this repository.
Official URL: http://journals.cambridge.org/action/displayAbstra...
Related URL: http://dx.doi.org/10.1112/S0010437X04001125
Abstract
Let n, d, k ≥ 2, b, y and l ≥ 3 be positive integers with the greatest prime factor of b not exceeding k. It is proved that the equation n(n+d)... (n+d.(k−1)d) = byl has no solution if d exceeds d1, where d1 equals 30 if l = 3; 950 if l = 4; 5 x 104 if l = 5 or 6; 108 if l = 7, 8, 9 or 10; 1015 if l ≥11. This confirms a conjecture of Erdos on the above equation for a large number of values of d.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to Springer. |
Keywords: | Arithmetic Progressions; Diophantine Equations; Elliptic Equations |
ID Code: | 67721 |
Deposited On: | 31 Oct 2011 13:28 |
Last Modified: | 31 Oct 2011 13:28 |
Repository Staff Only: item control page