The influence of the Coriolis force on flux tubes rising through the solar convection zone

Rai Choudhuri, Arnab ; Gilman, Peter A. (1987) The influence of the Coriolis force on flux tubes rising through the solar convection zone Astrophysical Journal, 316 . pp. 788-800. ISSN 0004-637X

Full text not available from this repository.

Official URL: http://adsabs.harvard.edu/doi/10.1086/165243

Related URL: http://dx.doi.org/10.1086/165243

Abstract

In order to study the effect of the Coriolis force due to solar rotation on rising magnetic flux, the authors consider a flux ring, azimuthally symmetric around the rotation axis, starting from rest at the bottom of the convection zone, and then follow the trajectory of the flux ring as it rises. If it is assumed that the flux ring remains azimuthally symmetric during its ascent, then the problem can be described essentially in terms of two parameters: the value of the initial magnetic field in the ring when it starts, and the effective drag experienced by it. For field strengths at the bottom of the convection zone of order 10,000 G or less, it is found that the Coriolis force plays a dominant role and flux rings starting from low latitudes at the bottom are deflected and emerge at latitudes significantly poleward of sunspot zones.

Item Type:Article
Source:Copyright of this article belongs to The American Astronomical Society.
Keywords:Convection; Coriolis effect; Dynamo theory; Magnetic flux; Solar magnetic field; Drag; Equations of motion; Magnetohydrodynamics; Solar rotation
ID Code:66561
Deposited On:25 Jun 2012 13:34
Last Modified:25 Jun 2012 13:34

Repository Staff Only: item control page