Modeling of a fluidized bed propylene polymerization reactor operated in condensed mode

Utikar, Ranjeet P. ; Harshe, Yogesh M. ; Mehra, Anurag ; Ranade, Vivek V. (2008) Modeling of a fluidized bed propylene polymerization reactor operated in condensed mode Journal of Applied Polymer Science, 108 (4). pp. 2067-2076. ISSN 0021-8995

Full text not available from this repository.

Official URL: http://onlinelibrary.wiley.com/doi/10.1002/app.277...

Related URL: http://dx.doi.org/10.1002/app.27748

Abstract

The gas-phase polymerization of propylene is one of the most widely accepted and commercially used processes for the manufacture of polypropylene (PP). Because of the highly exothermic nature of polymerization reactions, temperature runaway and subsequent polymer melting and agglomeration may occur, and the reactor has to be operated in a small operating window for safety. The addition of liquid monomer for heat removal (condensed mode) broadens the operating window and can substantially increase (by 50-100%) the capacity of given reactor hardware. This article describes the extension of a comprehensive mathematical model for the simulation of fluidized bed PP reactors to include the condensed mode of operations. The model is used to determine the influence of the operating parameters on the polymer properties and particle size distribution. The model is also used to determine the effects of two active sites and the reaction kinetics on macroscopic variables. The developed framework is useful for simulating multimonomer, multisite Ziegler-Natta-type olefin fluidized bed polymerization reactors operated under condensed mode.

Item Type:Article
Source:Copyright of this article belongs to John Wiley and Sons.
Keywords:Modeling; Polyolefins; Ziegler-Natta Polymerization
ID Code:64730
Deposited On:17 Oct 2011 03:59
Last Modified:17 Oct 2011 03:59

Repository Staff Only: item control page