Narayanan, E. K. ; Thangavelu, S. (2006) A spectral Paley-Wiener theorem for the Heisenberg group and a support theorem for the twisted spherical means on C n (Un théorème de Paley-Wiener spectral pour le groupe d'Heisenberg et un théorème de support pour les moyennes shériques tordues sur C n) Annales de l'Institut Fourier, 56 (2). pp. 459-473. ISSN 0373-0956
Full text not available from this repository.
Official URL: http://aif.cedram.org/aif-bin/item?id=AIF_2006__56...
Abstract
We prove a spectral Paley-Wiener theorem for the Heisenberg group by means of a support theorem for the twisted spherical means on C n . If f(z)e 1 4|z| 2 is a Schwartz class function we show that f is supported in a ball of radius B in C n if and only if f×µ r (z)=0 for r>B+|z| for all z∈C n . This is an analogue of Helgason's support theorem on Euclidean and hyperbolic spaces. When n=1 we show that the two conditions f×µ r (z)=µ r ×f(z)=0 for r>B+|z| imply a support theorem for a large class of functions with exponential growth. Surprisingly enough,this latter result does not generalize to higher dimensions.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to Institut Fourier, Université Joseph Fourier, Grenoble. |
Keywords: | Spectral Paley-wiener Theorem; Twisted Spherical Means; Special Hermite Operator; Laguerre Functions; Support Theorem; Spherical Harmonics |
ID Code: | 64421 |
Deposited On: | 10 Oct 2011 06:02 |
Last Modified: | 29 Nov 2011 11:07 |
Repository Staff Only: item control page