Effect of displacement-rate on the indentation behavior of an aluminum foam

Sudheer Kumar, P. ; Ramachandra, S. ; Ramamurty, U. (2003) Effect of displacement-rate on the indentation behavior of an aluminum foam Materials Science and Engineering: A, 347 (1-2). pp. 330-337. ISSN 0921-5093

Full text not available from this repository.

Official URL: http://www.sciencedirect.com/science/article/pii/S...

Related URL: http://dx.doi.org/10.1016/S0921-5093(02)00608-1

Abstract

The deep indentation response of a closed-cell aluminum foam under different rates of penetration, ranging from 1.5 × 10−2 to 5 × 103 mm s−1, was experimentally investigated. Two types of indenter geometries were utilized: a flat-ended punch (FEP) and a spherical-ended punch (SEP). Indentation test results obtained are compared with the results under uniaxial compression tests conducted with varying strain rates. Experimental results show that the indentation load-displacement response obtained using the FEP is similar to that observed under uniaxial compression. In all the cases, the plastic strength and the absorbed energy per unit deformed volume of the material increases linearly with increasing logarithm of displacement rate. Cross-sectional views of the indented specimens show that the deformation is confined only to the material directly beneath the indenter with very little lateral spread, a consequence of the near-zero plastic Poisson's ratio of the foam. The computed densification strain in the case of FEP indentation is similar to that observed in uniaxial compression, but significantly lower than that observed in SEP indentation. The shear strength and energy, extracted from the indentation data, agree well with those reported in the literature.

Item Type:Article
Source:Copyright of this article belongs to Elsevier Science.
Keywords:Metallic Foams; Indentation; Strain Rate; Energy Absorption; Plastic Strength
ID Code:62487
Deposited On:22 Sep 2011 03:06
Last Modified:22 Sep 2011 03:06

Repository Staff Only: item control page