Distribution of Husimi zeros in polygonal billiards

Biswas, Debabrata ; Sinha, Sudeshna (1999) Distribution of Husimi zeros in polygonal billiards Physical Review E - Statistical, Nonlinear and Soft Matter Physics, 60 (1). pp. 408-415. ISSN 1539-3755

PDF - Publisher Version

Official URL: http://pre.aps.org/abstract/PRE/v60/i1/p408_1

Related URL: http://dx.doi.org/10.1103/PhysRevE.60.408


The zeros of the Husimi function provide a minimal description of individual quantum eigenstates and their distribution is of considerable interest. We provide here a numerical study for pseudointegrable billiards which suggests that the zeros tend to diffuse over phase space in a manner reminiscent of chaotic systems but nevertheless contain a subtle signature of pseudointegrability. We also find that the zeros depend sensitively on the position and momentum uncertainties (Δq and Δp, respectively) with the classical correspondence best when Δq=Δp=√ħ/2. Finally, short-range correlations seem to be well described by the Ginibre ensemble of complex matrices.

Item Type:Article
Source:Copyright of this article belongs to The American Physical Society.
ID Code:60902
Deposited On:12 Sep 2011 09:37
Last Modified:18 May 2016 10:50

Repository Staff Only: item control page