Li, Jia Yu ; Narasimhan, M. S. (2001) A note on Hermitian-Einstein metrics on parabolic stable bundles Acta Mathematica Sinica, 17 (1). pp. 77-80. ISSN 1439-8516
|
PDF
- Author Version
222kB |
Official URL: http://www.springerlink.com/content/k00j346138qjj3...
Related URL: http://dx.doi.org/10.1007/s101140000091
Abstract
Let M̅ be a compact complex manifold of complex dimension two with a smooth Kähler metric and D a smooth divisor on M̅. If E is a rank 2 holomorphic vector bundle on M̅ with a stable parabolic structure along D, we prove that there exista a Hermitian-Einstein metric on E'=E|M̅/D compatible with the parabolic structure, whose curvature is square integrable.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to Springer. |
Keywords: | Hermitian-Einstein Metric; Parabolic Stable Bundle; Kähler Manifold |
ID Code: | 58111 |
Deposited On: | 31 Aug 2011 12:31 |
Last Modified: | 18 May 2016 09:14 |
Repository Staff Only: item control page