A note on Hermitian-Einstein metrics on parabolic stable bundles

Li, Jia Yu ; Narasimhan, M. S. (2001) A note on Hermitian-Einstein metrics on parabolic stable bundles Acta Mathematica Sinica, 17 (1). pp. 77-80. ISSN 1439-8516

[img]
Preview
PDF - Author Version
222kB

Official URL: http://www.springerlink.com/content/k00j346138qjj3...

Related URL: http://dx.doi.org/10.1007/s101140000091

Abstract

Let M̅ be a compact complex manifold of complex dimension two with a smooth Kähler metric and D a smooth divisor on M̅. If E is a rank 2 holomorphic vector bundle on M̅ with a stable parabolic structure along D, we prove that there exista a Hermitian-Einstein metric on E'=E|M̅/D compatible with the parabolic structure, whose curvature is square integrable.

Item Type:Article
Source:Copyright of this article belongs to Springer.
Keywords:Hermitian-Einstein Metric; Parabolic Stable Bundle; Kähler Manifold
ID Code:58111
Deposited On:31 Aug 2011 12:31
Last Modified:18 May 2016 09:14

Repository Staff Only: item control page