Segmentation of Gabor-filtered textures using deterministic relaxation

Raghu, P. P. ; Yegnanarayana, B. (1996) Segmentation of Gabor-filtered textures using deterministic relaxation IEEE Transactions on Image Processing, 5 (12). pp. 1625-1636. ISSN 1057-7149

Full text not available from this repository.

Official URL: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arn...

Related URL: http://dx.doi.org/10.1109/83.544570

Abstract

A supervised texture segmentation scheme is proposed in this article. The texture features are extracted by filtering the given image using a filter bank consisting of a number of Gabor filters with different frequencies, resolutions, and orientations. The segmentation model consists of feature formation, partition, and competition processes. In the feature formation process, the texture features from the Gabor filter bank are modeled as a Gaussian distribution. The image partition is represented as a noncausal Markov random field (MRF) by means of the partition process. The competition process constrains the overall system to have a single label for each pixel. Using these three random processes, the a posteriori probability of each pixel label is expressed as a Gibbs distribution. The corresponding Gibbs energy function is implemented as a set of constraints on each pixel by using a neural network model based on Hopfield network. A deterministic relaxation strategy is used to evolve the minimum energy state of the network, corresponding to a maximum a posteriori (MAP) probability. This results in an optimal segmentation of the textured image. The performance of the scheme is demonstrated on a variety of images including images from remote sensing.

Item Type:Article
Source:Copyright of this article belongs to IEEE.
ID Code:57757
Deposited On:29 Aug 2011 11:51
Last Modified:29 Aug 2011 11:51

Repository Staff Only: item control page