Co-expression of DevR and DevRN-Aph proteins is associated with hypoxic adaptation defect and virulence attenuation of Mycobacterium tuberculosis

De Majumdar, Shyamasree ; Sharma, Deepak ; Vashist, Atul ; Kaur, Kohinoor ; Taneja, Neetu Kumra ; Chauhan, Santosh ; Challu, Vijay K. ; Ramanathan, V. D. ; Balasangameshwara, V. ; Kumar, Prahlad ; Tyagi, Jaya Sivaswami (2010) Co-expression of DevR and DevRN-Aph proteins is associated with hypoxic adaptation defect and virulence attenuation of Mycobacterium tuberculosis PloS One, 5 (2). e9448_1-e9448_6. ISSN 1932-6203

[img]
Preview
PDF - Publisher Version
574kB

Official URL: http://dx.plos.org/10.1371/journal.pone.0009448

Related URL: http://dx.doi.org/10.1371/journal.pone.0009448

Abstract

Background: The DevR response regulator is implicated in both hypoxic adaptation and virulence of Mycobacterium tuberculosis (M. tb). DevR regulon genes are powerfully induced in vivo implicating them in bacterial adaptation to host control strategies. A better understanding of DevR function will illumine the way for new strategies to control and treat tuberculosis. Methodology/Principal Findings: Towards this objective, we used a combination of genetic, microbiological, biochemical, cell biological tools and a guinea pig virulence assay to compare the hypoxic adaptation and virulence properties of two novel M. tb strains, namely, a devR disruption mutant, Mut1, that expresses C-terminal truncated N-terminal domain of DevR (DevRNTD) as a fusion protein with AphI (DevRN-Kan), and its complemented strain, Comp1, that expresses intact DevR along with DevRN-Kan. Comp1 bacteria exhibit a defect in DevR-mediated phosphosignalling, hypoxic induction of HspX and also hypoxic survival. In addition, we find that Comp1 is attenuated in virulence in guinea pigs and shows decreased infectivity of THP-1 cells. While Mut1 bacilli are also defective in hypoxic adaptation and early growth in spleen, they exhibit an overall virulence comparable to that of wild-type bacteria. Conclusions/Significance: The hypoxic defect of Comp1 is associated to a defect in DevR expression level. The demonstrated repression of DevR function by DevRN-Kan suggests that such a knockdown approach could be useful for evaluating the activity of DevRS and other two-component signaling pathways. Further investigation is necessary to elucidate the mechanism underlying Comp1 attenuation.

Item Type:Article
Source:Copyright of this article belongs to Public Library of Science.
ID Code:57547
Deposited On:27 Aug 2011 12:20
Last Modified:18 May 2016 08:54

Repository Staff Only: item control page