Biochemical, biophysical, and functional characterization of bacterially expressed and refolded receptor binding domain of Plasmodium vivax duffy-binding

Singh, Sanjay ; Pandey, Kailash ; Chattopadhayay, Rana ; Yazdani, Syed Shams ; Lynn, Andrew ; Bharadwaj, Ashima ; Ranjan, Akash ; Chitnis, Chetan (2001) Biochemical, biophysical, and functional characterization of bacterially expressed and refolded receptor binding domain of Plasmodium vivax duffy-binding Journal of Biological Chemistry, 276 (20). pp. 17111-17116. ISSN 0021-9258

[img]
Preview
PDF - Publisher Version
141kB

Official URL: http://www.jbc.org/content/276/20/17111.abstract

Related URL: http://dx.doi.org/10.1074/jbc.M101531200

Abstract

Invasion of erythrocytes by malaria parasites is mediated by specific molecular interactions. Plasmodium vivax is completely dependent on interaction with the Duffy blood group antigen to invade human erythrocytes. The P. vivax Duffy-binding protein, which binds the Duffy antigen during invasion, belongs to a family of erythrocyte-binding proteins that also includesPlasmodium falciparum sialic acid binding protein andPlasmodium knowlesi Duffy binding protein. The receptor binding domains of these proteins lie in a conserved, N-terminal, cysteine-rich region, region II, found in each of these proteins. Here, we have expressed P. vivax region II (PvRII), the P. vivax Duffy binding domain, in Escherichia coli. Recombinant PvRII is incorrectly folded and accumulates in inclusion bodies. We have developed methods to refold and purify recombinant PvRII in its functional conformation. Biochemical, biophysical, and functional characterization confirms that recombinant PvRII is pure, homogeneous, and functionally active in that it binds Duffy-positive human erythrocytes with specificity. Refolded PvRII is highly immunogenic and elicits high titer antibodies that can inhibit binding of P. vivax Duffy-binding protein to erythrocytes, providing support for its development as a vaccine candidate forP. vivax malaria. Development of methods to produce functionally active recombinant PvRII is an important step for structural studies as well as vaccine development.

Item Type:Article
Source:Copyright of this article belongs to American Society for Biochemistry and Molecular Biology.
ID Code:5572
Deposited On:19 Oct 2010 11:52
Last Modified:16 May 2016 16:03

Repository Staff Only: item control page