On the number of integral ideals in galois extensions

Chandrasekharan, K. ; Good, A. (1983) On the number of integral ideals in galois extensions Monatshefte für Mathematik, 95 (2). pp. 99-109. ISSN 0026-9255

Full text not available from this repository.

Official URL: http://www.springerlink.com/content/l736549r274063...

Related URL: http://dx.doi.org/10.1007/BF01323653

Abstract

If a k denotes the number of integral ideals with normk, in any finite Galois extension of the rationals, we study sums of the form Σk≤x alk (l = 2,3, ...) "align="middle" border="0"> , along with the integral means of the 2ρ-th power (ρ real,ρ ≥1) of the absolute value of the corresponding Dedekind zeta-function. The two averages are related if ρ=n1-1/2, wheren is the degree of the Galois extension.

Item Type:Article
Source:Copyright of this article belongs to Springer-Verlag.
ID Code:5539
Deposited On:19 Oct 2010 11:58
Last Modified:20 May 2011 11:27

Repository Staff Only: item control page