An optimal theorem for the spherical maximal operator on the Heisenberg group

Narayanan, E. K. ; Thangavelu, S. (2004) An optimal theorem for the spherical maximal operator on the Heisenberg group Israel Journal of Mathematics, 144 (2). pp. 211-219. ISSN 0021-2172

Full text not available from this repository.

Official URL: http://www.springerlink.com/content/a2217420756317...

Related URL: http://dx.doi.org/10.1007/BF02916713

Abstract

Let In=Cn×R be the Heisenberg group and µr be the normalized surface measure on the sphere of radius r in Cn . Let M f=supr>0 f*μr. We prove an optimal Lp-boundedness result for the spherical maximal function M f, namely we prove that M is bounded on Lp(In) if and only if p>2n/2n-1.

Item Type:Article
Source:Copyright of this article belongs to Springer.
ID Code:53578
Deposited On:09 Aug 2011 11:40
Last Modified:09 Aug 2011 11:40

Repository Staff Only: item control page