Narayanan, E. K. ; Thangavelu, S. (2004) An optimal theorem for the spherical maximal operator on the Heisenberg group Israel Journal of Mathematics, 144 (2). pp. 211-219. ISSN 0021-2172
Full text not available from this repository.
Official URL: http://www.springerlink.com/content/a2217420756317...
Related URL: http://dx.doi.org/10.1007/BF02916713
Abstract
Let In=Cn×R be the Heisenberg group and µr be the normalized surface measure on the sphere of radius r in Cn . Let M f=supr>0 f*μr. We prove an optimal Lp-boundedness result for the spherical maximal function M f, namely we prove that M is bounded on Lp(In) if and only if p>2n/2n-1.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to Springer. |
ID Code: | 53578 |
Deposited On: | 09 Aug 2011 11:40 |
Last Modified: | 09 Aug 2011 11:40 |
Repository Staff Only: item control page