On the gauge for the Neumann problem in the half space

Ramasubramanian, S. (1994) On the gauge for the Neumann problem in the half space Sankhya, 56 (2). pp. 379-384. ISSN 1961-2002

[img]
Preview
PDF - Publisher Version
232kB

Official URL: http://sankhya.isical.ac.in/search/56a2/56a2033.ht...

Abstract

We consider the gauge function G for the Neumann problem for 1/2Δ+q in the half space D = {(α, x) ∈ Rd : α > 0}, where q is independent of α and is periodic in x. It is shown that if G ≠ ∞, then G is a bounded continuous function on Cl(D). If $H(x) = \int_0^{\infty }G(\alpha ,x)d\alpha ≠\∞ $8, it is shown that the corresponding Feynman-Kac semi-group decays exponentially.

Item Type:Article
Source:Copyright of this article belongs to Indian Statistical Institute.
Keywords:Renewal Process; Skorohod Embedding Theorem; Wiener Process
ID Code:52193
Deposited On:03 Aug 2011 06:44
Last Modified:18 May 2016 05:49

Repository Staff Only: item control page