Sharma, N. ; Subba Rao, G. V. ; Chowdari, B. V. R. (2005) Electrochemical properties of carbon-coated CaWO4 versus Li Electrochimica Acta, 50 (27). pp. 5305-5312. ISSN 0013-4686
Full text not available from this repository.
Official URL: http://www.sciencedirect.com/science/article/pii/S...
Related URL: http://dx.doi.org/10.1016/j.electacta.2005.03.007
Abstract
Carbon-coated CaWO4 nano-crystalline phases have been synthesized by ambient temperature solution precipitation method, characterized by X-ray diffraction, SEM and thermogravimetry and their electrochemical properties were studied versus Li metal. Galvanostatic cycling at a current of 60 mA/g in the voltage range 0.005-3.0 V on the 5 wt.% C-coated CaWO4 gave a reversible capacity of 230 ± 5 mAh/g corresponding to 2.5 mol of Li, which is almost stable from 20 to 50 cycles. Under the same conditions, the 10 wt.% C-coated CaWO4 showed a capacity of 355 ± 5 mAh/g (3.8 mol of Li) during the initial cycles, but the capacity degraded at a rate of 1.6 mAh/g per cycle in the range 5-100 cycles. A good operating voltage range was found to be 0.005-3.0 V with average discharge and charge potentials being 0.6 and 1.3 V, respectively. Coulombic efficiency in all cases was 96-98%. Cyclic voltammograms compliment the galvanostatic results. Impedance spectral data on the 10 wt.% C-coated CaWO4 at different voltages during the first and 20th discharge-charge cycle have been interpreted in terms of the variations in the bulk and charge-transfer resistances of the composite electrode. A reaction mechanism involving the formation/decomposition of the oxide bronze, 'LixWOy' has been proposed to explain the electrochemical cycling.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to Elsevier Science. |
Keywords: | CaWO4; Scheelite Structure; Electrochemical Properties; Li-ion Batteries |
ID Code: | 52000 |
Deposited On: | 02 Aug 2011 08:24 |
Last Modified: | 02 Aug 2011 08:24 |
Repository Staff Only: item control page