Tan, K. S. ; Reddy, M. V. ; Subba Rao, G. V. ; Chowdari, B. V. R. (2005) High-performance LiCoO2 by molten salt (LiNO3:LiCl) synthesis for Li-ion batteries Journal of Power Sources, 147 (1-2). pp. 241-248. ISSN 0378-7753
Full text not available from this repository.
Official URL: http://www.sciencedirect.com/science/article/pii/S...
Related URL: http://dx.doi.org/10.1016/j.jpowsour.2005.01.019
Abstract
In an effort to increase and sustain the reversible capacity of LiCoO2 on cycling, LiCoO2 is prepared by using the molten-salt of the eutectic LiNO3-LiCl at temperatures 650-850 °C with or without KOH as an oxidizing flux. The compounds are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), chemical analysis, surface area and density techniques. Cathodic behaviour was examined by cyclic voltammetry (CV) and charge-discharge cycling. The 850 °C-synthesized LiCoO2, which has excess lithium incorporated in to it, shows a reversible capacity, with ~98% coulombic efficiency, of 167 (±2) mAh g−1at a specific current of 30 mAg−1 in the range 2.5-4.4 V up to 80 cycles with no capacity-fading. When cycled to a higher cut-off voltage (4.5 V), a capacity of 192 (±2) mAh g−1 versus Li is obtained at the fifth cycle, but capacity-fading is observed, viz., ~ 6% after 60 cycles. On the basis of the CV and capacity-voltage profiles, this is attributed to the non-suppression of the hexagonal (H1) ↔ (H1-3) structural transition. A similar capacity-fading, i.e., ~ 5-6%, during 5-40 cycles, is also observed in the LiCoO2 prepared at 650 and 750 °C when cycled up to only 4.3 V and this is ascribed to the non-suppression of the H1 ↔ M ↔ H1 phase transitions (M = monoclinic).
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to Elsevier Science. |
Keywords: | LiCoO2; Molten Salt Synthesis; Cathode Material; Li-ion Batteries; Capacity Fading; Structural Transition |
ID Code: | 51991 |
Deposited On: | 02 Aug 2011 08:23 |
Last Modified: | 02 Aug 2011 08:23 |
Repository Staff Only: item control page