Enhanced function annotations for Drosophila serine proteases: a case study for systematic annotation of multi-member gene families

Shah, Parantu K. ; Tripathi, Lokesh P. ; Jensen, Lars Juhl ; Gahnim, Murad ; Masone, Christopher ; Furlong, Eileen E. ; Rodrigues, Veronica ; White, Kevin P. ; Bork, Peer ; Sowdhamini, R. (2008) Enhanced function annotations for Drosophila serine proteases: a case study for systematic annotation of multi-member gene families Gene, 407 (1-2). pp. 199-215. ISSN 0378-1119

Full text not available from this repository.

Official URL: http://www.sciencedirect.com/science/article/pii/S...

Related URL: http://dx.doi.org/10.1016/j.gene.2007.10.012

Abstract

Systematically annotating function of enzymes that belong to large protein families encoded in a single eukaryotic genome is a very challenging task. We carried out such an exercise to annotate function for serine-protease family of the trypsin fold in Drosophila melanogaster, with an emphasis on annotating serine-protease homologues (SPHs) that may have lost their catalytic function. Our approach involves data mining and data integration to provide function annotations for 190 Drosophila gene products containing serine-protease-like domains, of which 35 are SPHs. This was accomplished by analysis of structure-function relationships, gene-expression profiles, large-scale protein-protein interaction data, literature mining and bioinformatic tools. We introduce functional residue clustering (FRC), a method that performs hierarchical clustering of sequences using properties of functionally important residues and utilizes correlation co-efficient as a quantitative similarity measure to transfer in vivo substrate specificities to proteases. We show that the efficiency of transfer of substrate-specificity information using this method is generally high. FRC was also applied on Drosophila proteases to assign putative competitive inhibitor relationships (CIRs). Microarray gene-expression data were utilized to uncover a large-scale and dual involvement of proteases in development and in immune response. We found specific recruitment of SPHs and proteases with CLIP domains in immune response, suggesting evolution of a new function for SPHs. We also suggest existence of separate downstream protease cascades for immune response against bacterial/fungal infections and parasite/parasitoid infections. We verify quality of our annotations using information from RNAi screens and other evidence types. Utilization of such multi-fold approaches results in 10-fold increase of function annotation for Drosophila serine proteases and demonstrates value in increasing annotations in multiple genomes.

Item Type:Article
Source:Copyright of this article belongs to Elsevier Science.
Keywords:Structural Properties; Immune Response; Evolution; Function Annotation; Gene-expression Profiling; Enzyme Homologues
ID Code:48373
Deposited On:14 Jul 2011 06:44
Last Modified:04 Jul 2012 09:49

Repository Staff Only: item control page