Effect of geometric constraints on the self-assembled monolayer formation of aromatic disulfides on polycrystalline gold

Bandyopadhyay, Krisanu ; Patil, Vijaya ; Sastry, Murali ; Vijayamohanan, K. (1998) Effect of geometric constraints on the self-assembled monolayer formation of aromatic disulfides on polycrystalline gold Langmuir, 14 (14). pp. 3808-3814. ISSN 0743-7463

Full text not available from this repository.

Official URL: http://pubs.acs.org/doi/abs/10.1021/la980088i

Related URL: http://dx.doi.org/10.1021/la980088i

Abstract

The self-assembled monolayer (SAM) formation tendency of two comparatively small aromatic disulfide molecules, namely naphthalene disulfide (NDS) and diphenyl disulfide (DDS), has been investigated using quartz crystal microgravimetry (QCM), cyclic voltammetric, and impedance techniques. The typical time period for monolayer formation on polycrystalline gold has been found to be about 2 h for both the molecules from the QCM data. A significant change in double-layer capacitance values (from 21 μF/cm2 for bare gold to ~14 and ~8 μF/cm2 for NDS and DDS, respectively) upon monolayer formation for both the cases has been observed, which correlates well with the QCM area per molecule values (~49 and 36 Å2 for NDS and DDS, respectively). The difference in the permeability of the two monolayers to simple ionic species was also investigated using K3Fe(CN)6 as redox probes in aqueous solution. A mixed linear/radial mode of diffusion is observed at the DDS-modified electrode in contrast to a predominant linear one at the electrode derivatized with a NDS monolayer. Impedance measurements indicate apparent surface coverages of 99.6 and 99.8% and rate constants of 9.4 × 10−5 and 4.1 × 10−5 cm/s for the Fe(CN)63−/4− couple in the case of NDS and DDS, respectively. These results strongly demonstrate the effect of geometrical constraints in controlling the microscopic structure and the packing density of the SAMs and highlight the importance of intramolecular conformational changes in controlling the monolayer packing density.

Item Type:Article
Source:Copyright of this article belongs to American Chemical Society.
ID Code:47180
Deposited On:06 Jul 2011 14:06
Last Modified:04 Jul 2012 06:24

Repository Staff Only: item control page