Signaling logic of activity-triggered dendritic protein synthesis: an mTOR gate but not a feedback switch

Jain, Pragati ; Bhalla, Upinder S. (2009) Signaling logic of activity-triggered dendritic protein synthesis: an mTOR gate but not a feedback switch PLoS Computational Biology, 5 (2). pp. 1-17. ISSN 1553-734X

[img]
Preview
PDF - Publisher Version
1MB

Official URL: http://www.ploscompbiol.org/article/info%3Adoi%2F1...

Related URL: http://dx.doi.org/10.1371/journal.pcbi.1000287

Abstract

Changes in synaptic efficacy are believed to form the cellular basis for memory. Protein synthesis in dendrites is needed to consolidate long-term synaptic changes. Many signals converge to regulate dendritic protein synthesis, including synaptic and cellular activity, and growth factors. The coordination of these multiple inputs is especially intriguing because the synthetic and control pathways themselves are among the synthesized proteins. We have modeled this system to study its molecular logic and to understand how runaway feedback is avoided. We show that growth factors such as brain-derived neurotrophic factor (BDNF) gate activity-triggered protein synthesis via mammalian target of rapamycin (mTOR). We also show that bistability is unlikely to arise from the major protein synthesis pathways in our model, even though these include several positive feedback loops. We propose that these gating and stability properties may serve to suppress runaway activation of the pathway, while preserving the key role of responsiveness to multiple sources of input.

Item Type:Article
Source:Copyright of this article belongs to Public Library of Science.
ID Code:4414
Deposited On:18 Oct 2010 08:37
Last Modified:16 May 2016 15:04

Repository Staff Only: item control page