Emergent properties of networks of biological signaling pathways

Bhalla, Upinder S. ; Iyengar, Ravi (1999) Emergent properties of networks of biological signaling pathways Science, 283 . pp. 381-387. ISSN 0036-8075

[img]
Preview
PDF - Publisher Version
167kB

Official URL: http://www.sciencemag.org/cgi/content/abstract/283...

Related URL: http://dx.doi.org/10.1126/science.283.5400.381

Abstract

Many distinct signaling pathways allow the cell to receive, process, and respond to information. Often, components of different pathways interact, resulting in signaling networks. Biochemical signaling networks were constructed with experimentally obtained constants and analyzed by computational methods to understand their role in complex biological processes. These networks exhibit emergent properties such as integration of signals across multiple time scales, generation of distinct outputs depending on input strength and duration, and self-sustaining feedback loops. Feedback can result in bistable behavior with discrete steady-state activities, well-defined input thresholds for transition between states and prolonged signal output, and signal modulation in response to transient stimuli. These properties of signaling networks raise the possibility that information for "learned behavior" of biological systems may be stored within intracellular biochemical reactions that comprise signaling pathways.

Item Type:Article
Source:Copyright of this article belongs to American Association for the Advancement of Science.
ID Code:4390
Deposited On:13 Oct 2010 11:37
Last Modified:16 May 2016 15:03

Repository Staff Only: item control page