Roy, S. M. ; Singh, Virendra (1987) The quasiopen string Physical Review D - Particles, Fields, Gravitation and Cosmology, 35 (6). pp. 1939-1942. ISSN 1550-7998
Full text not available from this repository.
Official URL: http://prd.aps.org/abstract/PRD/v35/i6/p1939_1
Related URL: http://dx.doi.org/10.1103/PhysRevD.35.1939
Abstract
The quasiopen string in D dimensions is defined by the Nambu-Goto action and the boundary conditions (x'+x)(σα,τ)=Vα(x'-x) (σα,τ), where σ=σ1 and σ2 denote the ends of the string, x'≡∂x/∂σ, and the Vα (α=1,2) are real symmetric orthogonal matrices. (The usual open string corresponds to V1=V2=−1.) We impose Poincaré invariance in d dimensions, d<D. Classically this requires (Vα)jk=−δjk for j,k ∈ Poincaré sector and (Vα)jk=0 if only one of j,k belongs to the Poincaré sector. Further quantization gives D=26 and a mass spectrum with a ground-state mass squared MG2=−(1−Ji||thetai||(1-||theTaI||)/4)/α', where ||thetai||≤(½), exp(2iπthetai) are the eigenvalues of V2V1, and α' is the slope parameter in the string action. A choice of thetai giving a tachyon-free spectrum is thus possible if d≤10.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to The American Physical Society. |
ID Code: | 42878 |
Deposited On: | 07 Jun 2011 06:38 |
Last Modified: | 21 Jul 2012 14:03 |
Repository Staff Only: item control page