Rao, C. N. R. ; Ganguly, P. ; Singh, K. K. ; Mohan Ram, R. A. (1988) A comparative study of the magnetic and electrical properties of perovskite oxides and the corresponding two-dimensional oxides of K2NiF4 structure Journal of Solid State Chemistry, 72 (1). pp. 14-23. ISSN 0022-4596
Full text not available from this repository.
Official URL: http://linkinghub.elsevier.com/retrieve/pii/002245...
Related URL: http://dx.doi.org/10.1016/0022-4596(88)90003-5
Abstract
Electrical and magnetic properties of several oxide systems of K2NiF4 structure have been compared to those of the corresponding perovskites. Members of the La1−xSr1+xCoO4 system are all semiconductors with a high activation energy for conduction unlike La1−xSrxCoO3 (x≥0.3) which is metallic; the latter oxides are ferromagnetic. La0.5Sr1.5CoO4 shows a magnetization of 0.5 μB at 0 K (compared to 1.5 μB of La0.5Sr0.5CoO3), but the high-temperature susceptibilities of the two systems are comparable. In SrO·(La0.5Sr0.5MnO3)n, both magnetization and electrical conductivity increase with the increase in n approaching the value of the perovskite La0.5Sr0.5MnO3. LaSrMn0.5Ni0.5(Co0.5)O4 shows no evidence of long-range ferromagnetic ordering unlike the perovskite LaMn0.5Ni0.5(Co0.5)O3; high-temperature susceptibility behavior of these two insulating systems is, however, similar. LaSr1−xBaxNiO4 exhibits high electrical resistivity with the resistivity increasing proportionately with the magnetic susceptibility (note that LaNiO3 is a Pauli-paramagnetic metal). High-temperature susceptibility of LaSrNiO4 and LaNiO3 are comparable. Susceptibility measurements show no evidence for long-range ordering in LaSrFe1−xNixO4 unlike in LaFe1−xNixO3 (x≤0.35) and the electrical resistivity of the former is considerably higher. Electrical resistivity of Sr2RuO4 is more than an order of magnitude higher than that of SrRuO3. Some generalizations of the properties of two- and three-dimensional oxide systems have emerged from these experimental observations.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to Elsevier Science. |
ID Code: | 41939 |
Deposited On: | 31 May 2011 13:42 |
Last Modified: | 31 May 2011 13:42 |
Repository Staff Only: item control page