Avvaru, Balasubrahmanyam ; Patil, Mohan N. ; Gogate, Parag R. ; Pandit, Aniruddha B. (2006) Ultrasonic atomization: effect of liquid phase properties Ultrasonics, 44 (2). pp. 146-158. ISSN 0041-624X
Full text not available from this repository.
Official URL: http://linkinghub.elsevier.com/retrieve/pii/S00416...
Related URL: http://dx.doi.org/10.1016/j.ultras.2005.09.003
Abstract
Experiments have been conducted to understand the mechanism by which the ultrasonic vibration at the gas liquid interface causes the atomization of liquid. For this purpose, aqueous solutions having different viscosities and liquids showing Newtonian (aqueous solution of glycerin) and non-Newtonian behavior (aqueous solution of sodium salt of carboxy methyl cellulose) were employed. It has been found that the average droplet size produced by the pseudo-plastic liquid is less than that produced by the viscous Newtonian liquid having viscosity equal to zero-shear rate viscosity of the shear thinning liquid. The droplet size was found to increase initially with an increase in the viscosity up to a certain threshold viscosity after which the droplet size was found to decrease again. Also droplet size distribution is found to be more compact (uniform sizes) with an increasing viscosity of the atomizing liquid. The presence of the cavitation and its effect on the atomization has been semi quantitatively confirmed using energy balance and by the measurement of the droplet ejection velocities and validated on the basis of the decomposition of the aqueous KI solution. A correlation has been proposed for the prediction of droplet size for aqueous Newtonian fluids and fluids showing non-Newtonian behavior based on the dimensionless numbers incorporating the operating parameters of the ultrasonic atomizer and the liquid phase physico-chemical properties.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to Elsevier Science. |
Keywords: | Ultrasonic Atomization; Ultrasound; Droplets; Aqueous Newtonian; Shear Thinning Liquid |
ID Code: | 39619 |
Deposited On: | 14 May 2011 09:56 |
Last Modified: | 14 May 2011 09:56 |
Repository Staff Only: item control page