Characterization of gas-liquid flows in stirred vessels using pressure and torque fluctuations

Khopkar, A. R. ; Panaskar, S. S. ; Pandit, A. B. ; Ranade, V. V. (2005) Characterization of gas-liquid flows in stirred vessels using pressure and torque fluctuations Industrial & Engineering Chemistry Research, 44 (9). pp. 3298-3311. ISSN 0888-5885

Full text not available from this repository.

Official URL: http://pubs.acs.org/doi/abs/10.1021/ie0493412

Related URL: http://dx.doi.org/10.1021/ie0493412

Abstract

Gas-liquid flows in a stirred vessel exhibit different flow regimes and demonstrate complex interaction of transport processes with varying spatio-temporal scales. The knowledge of key space and time scales of fluid dynamics is important for designing and enhancing the performance of gas-liquid stirred reactor. The present study uses simple, robust, and nonintrusive experimental techniques (torque and pressure sensors) to characterize the fluid dynamics in a gas-liquid stirred vessel. Time series obtained from the pressure and torque sensors were analyzed to develop criteria for flow regime identification. Further analyses of torque and pressure time series were done to extract valuable information of different time scales of fluid dynamics. The detailed analysis of torque and wall pressure fluctuations provided not only an insight into the fluid dynamics but also a possible opportunity to on-line monitoring of gas-liquid flows in stirred vessel.

Item Type:Article
Source:Copyright of this article belongs to American Chemical Society.
ID Code:39602
Deposited On:14 May 2011 09:07
Last Modified:12 Jul 2012 09:51

Repository Staff Only: item control page