Parametric estimation for linear stochastic delay differential equations driven by fractional Brownian motion

Prakasa Rao, B. L. S. (2008) Parametric estimation for linear stochastic delay differential equations driven by fractional Brownian motion Random Operators and Stochastic Equations, 16 (1). pp. 27-38. ISSN 0926-6364

Full text not available from this repository.

Official URL: http://www.reference-global.com/doi/abs/10.1515/RO...

Related URL: http://dx.doi.org/10.1515/ROSE.2008.003

Abstract

Consider a linear stochastic differential equation dX(t) = (aX(t)+ bX(t - 1))dt + dWtH , t ≥ 0 With time delay driven by a fractional Brownian motion {wtH, t ≥ 0} . We investigate the asymptotic properties of the maximum likelihood estimator of the parameter θ = (a, b).

Item Type:Article
Source:Copyright of this article belongs to Walter de Gruyter GmbH & Co. KG.
Keywords:Linear Stochastic Differential Equation; Time Delay; Fractional Ornstein-uhlenbeck Type Process; Fractional Brownian Motion; Maximum Likelihood Estimation; Consistency; Local Asymptotic Normality; Local Asymptotic Mixed Normality
ID Code:37658
Deposited On:26 Apr 2011 12:49
Last Modified:26 Apr 2011 12:49

Repository Staff Only: item control page