Accardi, Luigi ; Parthasarathy, K. R. (1988) A martingale characterization of canonical commutation and anticommutation relations Journal of Functional Analysis, 77 (1). pp. 211-231. ISSN 0022-1236
Full text not available from this repository.
Official URL: http://linkinghub.elsevier.com/retrieve/pii/002212...
Related URL: http://dx.doi.org/10.1016/0022-1236(88)90085-7
Abstract
Using a martingale condition and some restrictions on moments up to fourth order the characterisation problem of boson, fermion, and classical brownian motions is studied from a unified point of view entirely within the framework of elementary operator theory. Global commutation and anticommutation rules turn out to be consequences of corresponding commutation and anticommutation rules between past and future observables.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to Elsevier Science. |
ID Code: | 36222 |
Deposited On: | 25 May 2011 13:35 |
Last Modified: | 25 May 2011 13:35 |
Repository Staff Only: item control page