Biswas, Indranil ; Ravindra, G. V. (2009) On the Picard bundle Bulletin des Sciences Mathematiques, 133 (1). pp. 51-55. ISSN 0007-4497
Full text not available from this repository.
Official URL: http://linkinghub.elsevier.com/retrieve/pii/S00074...
Related URL: http://dx.doi.org/10.1016/j.bulsci.2008.08.004
Abstract
Fix a holomorphic line bundle ξ over a compact connected Riemann surface X of genus g, with g≥2, and also fix an integer r such that degree(ξ)>r(2g-1). Let Mξ(r) denote the moduli space of stable vector bundles over X of rank r and determinant ξ. The Fourier-Mukai transform, with respect to a Poincare line bundle on X× J(X), of any F ∈ Mξ(r) is a stable vector bundle on J(X). This gives an injective map of Mξ(r) in a moduli space associated to J(X). If g=2, then Mξ(r) becomes a Lagrangian subscheme.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to Elsevier Science. |
Keywords: | Moduli Space; Fourier-Mukai Transformation; Lagrangian Subscheme |
ID Code: | 3574 |
Deposited On: | 12 Oct 2010 04:29 |
Last Modified: | 27 Jan 2011 06:54 |
Repository Staff Only: item control page