On an Archimedean analogue of Tate's conjecture

Prasad, Dipendra ; Rajan, C. S. (2004) On an Archimedean analogue of Tate's conjecture Journal of Number Theory, 99 (1). pp. 180-184. ISSN 0022-314X

[img]
Preview
PDF - Publisher Version
114kB

Official URL: http://linkinghub.elsevier.com/retrieve/pii/S00223...

Related URL: http://dx.doi.org/10.1016/S0022-314X(02)00053-7

Abstract

We consider an Archimedean analogue of Tate's conjecture, and verify the conjecture in the examples of isospectral Riemann surfaces constructed by Vignéras and Sunada. We prove a simple lemma in group theory which lies at the heart of T. Sunada's theorem about isospectral manifolds.

Item Type:Article
Source:Copyright of this article belongs to Elsevier Science.
ID Code:35716
Deposited On:12 Apr 2011 08:56
Last Modified:17 May 2016 18:40

Repository Staff Only: item control page