Prasad, Dipendra ; Rajan, C. S. (2004) On an Archimedean analogue of Tate's conjecture Journal of Number Theory, 99 (1). pp. 180-184. ISSN 0022-314X
|
PDF
- Publisher Version
114kB |
Official URL: http://linkinghub.elsevier.com/retrieve/pii/S00223...
Related URL: http://dx.doi.org/10.1016/S0022-314X(02)00053-7
Abstract
We consider an Archimedean analogue of Tate's conjecture, and verify the conjecture in the examples of isospectral Riemann surfaces constructed by Vignéras and Sunada. We prove a simple lemma in group theory which lies at the heart of T. Sunada's theorem about isospectral manifolds.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to Elsevier Science. |
ID Code: | 35716 |
Deposited On: | 12 Apr 2011 08:56 |
Last Modified: | 17 May 2016 18:40 |
Repository Staff Only: item control page