Biswas, Indranil ; Raina, A. K. (2005) Hecke transformation and the generalized theta function Journal of Mathematical Physics, 46 (5). 053512_1-053512_10. ISSN 0022-2488
Full text not available from this repository.
Official URL: http://link.aip.org/link/?JMAPAQ/46/053512/1
Related URL: http://dx.doi.org/10.1063/1.1879082
Abstract
We describe the behavior of the generalized theta function with respect to the Hecke transformations. Let E be a holomorphic vector bundle over rank r and degree r(g-1) over a compact Riemann surface X of genus g. Let P(E) [respectively, P(E)] be the space of all lines (respectively, hyperplanes) in the fibers of E. Certain Zariski open subsets of P(E)××P(E) and P(E)×P(E)×P(E)×P(E) parametrize holomorphic families of vector bundles over X of rank r and degree r(g-1). We describe the generalized theta line bundle for these families.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to American Institute of Physics. |
ID Code: | 3553 |
Deposited On: | 12 Oct 2010 04:16 |
Last Modified: | 12 Oct 2010 04:16 |
Repository Staff Only: item control page