Rao, Ch. Srinivasa ; Sachdev, P. L. ; Ramaswamy, Mythily (2001) Analysis of the self-similar solutions of a generalized Burger's equation with nonlinear damping Mathematical Problems in Engineering, 7 (3). pp. 253-282. ISSN 1024-123X
|
PDF
- Publisher Version
1MB |
Official URL: http://www.hindawi.com/journals/mpe/2001/254304/ab...
Related URL: http://dx.doi.org/10.1155/S1024123X01001648
Abstract
The nonlinear ordinary differential equation resulting from the self-similar reduction of a generalized Burgers equation with nonlinear damping is studied in some detail. Assuming initial conditions at the origin we observe a wide variety of solutions - (positive) single hump, unbounded or those with a finite zero. The existence and nonexistence of positive bounded solutions with different types of decay (exponential or algebraic) to zero at infinity for specific parameter ranges are proved.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to Hindawi Publishing Corporation. |
Keywords: | Burger's Equation; Initial Value Problem; Generalized Burger's Equation; Self-similar Solutions |
ID Code: | 33887 |
Deposited On: | 30 Mar 2011 13:37 |
Last Modified: | 17 May 2016 16:46 |
Repository Staff Only: item control page