Bhatwadekar, S. M. ; Keshari, Manoj Kumar (2003) A question of Nori: projective generation of ideals K-Theory, 28 (4). pp. 329-351. ISSN 0920-3036
Full text not available from this repository.
Official URL: http://www.springerlink.com/content/q5885g04605733...
Related URL: http://dx.doi.org/10.1023/A:1026217116072
Abstract
Let A be a smooth affine domain of dimension d over an infinite perfect field k and let n be an integer such that 2n ≥ d + 3. Let I ⊂A[T] be an ideal of height n. Assume that I = (f 1,...,f n ) + (I 2 T). Under these assumptions, it is proved in this paper that I = (g 1,...,g n ) with f i - g i⊂ (I 2 T), thus settling a question of Nori affirmatively.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to Springer-Verlag. |
Keywords: | Projective Modules; Affine Domain; Unimodular Elements |
ID Code: | 3210 |
Deposited On: | 11 Oct 2010 09:58 |
Last Modified: | 18 May 2011 09:31 |
Repository Staff Only: item control page