Bhatia, Rajendra ; Kittaneh, Fuad (1998) Norm inequalities for positive operators Letters in Mathematical Physics, 43 (3). pp. 225-231. ISSN 0377-9017
Full text not available from this repository.
Official URL: http://www.springerlink.com/index/H76M1722882N2771...
Related URL: http://dx.doi.org/10.1023/A:1007432816893
Abstract
Let A, B be positive operators on a Hilbert space, z any complex number, m any positive integer, and |||.||| |||.||| " align="middle" border="0"> any unitarily invariant norm. We show that |||A + zB||| ≤ |||A + | z |B||| '\leqslant' " align="middle" border="0"> and |||Am + Bm ||| ≤ |||( A + B )m ||| '\leqslant' " align="middle" border="0"> Some related inequalities are also obtained.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to Springer-Verlag. |
Keywords: | Positive Operator; Unitarily Invariant Norm; Majorisation |
ID Code: | 2560 |
Deposited On: | 08 Oct 2010 07:22 |
Last Modified: | 08 Oct 2010 07:22 |
Repository Staff Only: item control page