Retrieval properties of a hopfield model with random asymmetric interactions

Chengxiang, Zhang ; Dasgupta, Chandan ; Singh, Manoranjan P. (2000) Retrieval properties of a hopfield model with random asymmetric interactions Neural Computation, 12 (4). pp. 865-880. ISSN 0899-7667

Full text not available from this repository.

Official URL: http://www.mitpressjournals.org/doi/abs/10.1162/08...

Related URL: http://dx.doi.org/10.1162/089976600300015628

Abstract

The process of pattern retrieval in a Hopfield model in which a random antisymmetric component is added to the otherwise symmetric synaptic matrix is studied by computer simulations. The introduction of the antisymmetric component is found to increase the fraction of random inputs that converge to the memory states. However, the size of the basin of attraction of a memory state does not show any significant change when asymmetry is introduced in the synaptic matrix. We show that this is due to the fact that the spurious fixed points, which are destabilized by the introduction of asymmetry, have very small basins of attraction. The convergence time to spurious fixed-point attractors increases faster than that for the memory states as the asymmetry parameter is increased. The possibility of convergence to spurious fixed points is greatly reduced if a suitable upper limit is set for the convergence time. This prescription works better if the synaptic matrix has an antisymmetric component.

Item Type:Article
Source:Copyright of this article belongs to MIT Press.
ID Code:22875
Deposited On:25 Nov 2010 13:55
Last Modified:07 Feb 2011 04:36

Repository Staff Only: item control page